A Fluid Model Study of Multipath Communication in a Hybrid Network for a Moving Convoy
نویسندگان
چکیده
Mobile communication platforms of ships, aircrafts, ground vehicles, or individual agents of both military and public services often operate in highly dynamic conditions with constantly changing infrastructure and access to communication resources. Efficient techniques for rapid and yet stable communication of such fleets with their control centres and between cooperating vehicles within the fleet is a challenging but important area of study with the potential to facilitate the analysis and design of efficient and robust communication systems. Multi-path extensions of data transmission protocols aim to take advantage of path diversity to achieve efficient bandwidth allocation while maintaining stability. Such multi-path resourcepooling extensions of routing and congestion control intrinsically implement decentralisation with implicit resource sharing. In this paper, we build on the recent theoretical work on fluid model approximations of multi-path TCP and study their application to the scenarios in which a convoy with two communication nodes (representing a convoy’s head and tail) establishes channels with a set of radio/WiFi towers and a satellite relaying information to a remote destination; these channels have time-varying capacities which depend on the position and dynamics of the convoy. The paper demonstrates how path diversity can be implicitly utilised to spread flow across available paths under such scenarios.
منابع مشابه
Model for Thermal Conductivity of Nanofluids Using a General Hybrid GMDH Neural Network Technique
In this study, a model for estimating the NFs thermal conductivity by using a GMDH-PNN has been investigated. NFs thermal conductivity was modeled as a function of the nanoparticle size, temperature, nanoparticle volume fraction and the thermal conductivity of the base fluid and nanoparticles. For this purpose, the developed network contains 8 layers with 2 inputs in each layer and also tra...
متن کاملVibration Suppression of Simply Supported Beam under a Moving Mass using On-Line Neural Network Controller
In this paper, model reference neural network structure is used as a controller for vibration suppression of the Euler–Bernoulli beam under the excitation of moving mass travelling along a vibrating path. The non-dimensional equation of motion the beam acted upon by a moving mass is achieved. A Dirac-delta function is used to describe the position of the moving mass along the beam and its iner...
متن کاملThe Feedback Based Mechanism for Video Streaming Over Multipath Ad Hoc Networks
Ad hoc networks are multi-hop wireless networks without a pre-installed infrastructure. Such networks are widely used in military applications and in emergency situations as they permit the establishment of a communication network at very short notice with a very low cost. Video is very sensitive for packet loss and wireless ad-hoc networks are error prone due to node mobility and weak links. H...
متن کاملA fuzzy capacitated facility location-network design model: A hybrid firefly and invasive weed optimization (FIWO) solution
Facility location-network design (FLND) problem, which determines the location of facilities and also communication links between the demand and facility nodes, is arisen from the combination of the facility location and network design problems. This paper deals with fuzzy capacitated facility location-network design model which aims to select the facilities and candidate links in a way that yi...
متن کاملWhich Methodology is Better for Combining Linear and Nonlinear Models for Time Series Forecasting?
Both theoretical and empirical findings have suggested that combining different models can be an effective way to improve the predictive performance of each individual model. It is especially occurred when the models in the ensemble are quite different. Hybrid techniques that decompose a time series into its linear and nonlinear components are one of the most important kinds of the hybrid model...
متن کامل